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Figure 1: Timeline of an illness presenting latency, incubation, and communicability

Introduction

Epidemic spread may in general depend on both climate related factors such

as air temperature, and population related factors such as movement of units

between locations.

The article [TJH+18] analyses BTV, a disease of ruminants spreading in

Northern Europe as a result of Climate Change, introduced for the first

time in 2006 and resulting in the eventual infection of thousand of farms

across many countries.

The authors show that the UK outbreak could have potentially been much

larger had the infection been introduced into the west of England, either

directly or as a result of the movement of infected animals from East Anglia

before the first case was detected. Hence we are given a first clue that Net-

work Topology, that is, the combinatorial contingency of the geographical

placement of locations may play a crucial role in the spread, but also in the

containment of animal epidemics.

The concrete explanation together with an in-depth analysis and the full

details of the case study that is the starting point for our analysis is found

in [TJH+18].

The importance of our project is considerable and applications may not be

restricted to one particular domain.
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The context of the problem is amenable to abstraction. The setting may be

applied to any problem supposing locations, fixed dwelling places for animal

populations, and interactions in the form of movement of units between

these locations.

Our intention is for the framework we are developing to be applied to illnesses

presenting disjoint periods of latency and communicability, and periods of

incubation.

During the latency period, if specific to the illness in question, the illness is

acquired and not transmittable.

During the incubation time individuals infected do not display any sign of

the illness and the illness is not detectable macroscopically.

During the communicability time, a period that may overlap in part with

the period of incubation, individuals infected may or may not display any

sign of the illness while the illness becomes transmittable.

During our initial consultations and assessment of the problem, it has be-

come clear we need to place a large amount of our efforts on the analysis of

the combinatorial properties of the networks and of the processes that act

upon these networks.

To be quite concrete, as in a strategic board game, some maps may be

good, some may be easy, some may require great skill in managing the

associated problems, and so on. The specific details we are and we plan to

be concentrating on are the main matter for the present report.

3



Attainable Objectives

Our discipline and approach is mathematical in nature, with focus on Dis-

crete Processes and Combinatorics. Hence the main subject of our inves-

tigation is the structural assessment of epidemic outbreaks, the interactive

process that leads to these outbreaks, together with the topology of the

networks on which these interactions take place.

One aim is to present a model of disease detection within this setting such

that the model obtained has both explanatory power, in the sense of tracing

the history of an illness within a geographical area, which may also be used

for prediction and containment purposes.

We study disease spread as flowing through a particular type of connected

temporal network, also known as a temporal graph.

We are given a geographical map in the form of a list of geographical coor-

dinates that essentially presents the spatial information relating to the fixed

locations we are considering.

Therefore, in its abstract form, our problem generalizes to any setting in

which we have locations, that is - spatially-limited dwelling places for animal

populations, and animal movement between these locations.

We aim to model disease spread within this setting such that the model

obtained has not only explanatory power, but may also be used for prediction

purposes.

For example, we may isolate or identify problem parameters which can be

global or local, such that one can react in real-time when an epidemic breaks

and through a process of optimization of these parameters one can isolate

infected locations effectively such that the outbreak will be minimal.
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Spread can be modelled with several different layers of structured data, e.g.

- unit-disk graphs for geometric locations U

- temporal graphs of movements M

- aggregated temporal graph of the dynamics of spreading U ◦M

- a probabilistic generalization of this model, comprising probabilistic

state transitions.

Two of the questions we posed during our initial assessment for which we

expect to design efficient solutions are the following.

Is it possible to “localize” the source of an infection in real time, by

observing detection data on the given graph?

Hence, is it possible to predict the fact that other locations are infected,

by observing a detected location at a given time?

The main application of our study is in policy-making. One of our earliest

observations was that locations on the underlying map may hypothetically

be arranged in a way that minimizes spread of disease.

Furthermore, identifying certain preferable network topologies, both for the

underlying map of locations and for the economic exchanges between them

may dictate rigorous strategies in performing trade between locations.

We shall attempt a description of our problem in terms of game theoretical

terminology below.
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Background of Research in the Area

The earliest efforts towards a mathematical analysis of epidemics are found

in Bernoulli [DH00] who used statistical methods to analyze smallpox and

identified a cyclical behavior in the spread of epidemics.

An early serious attempt towards a rigorous model of transmission is found

in a paper by P.D. Enko published in Russian in 1889 [Die88].

The modern mathematical theory of epidemics is one century old now.

Hamer and Soper elaborate on the periodical nature of disease prevalence

[Sop29].

We also mention the early work of Kermack and McKendrick [KM91b,

KM91a, KM91c]. Compartmental models, that is, models assuming a change

of states between susceptibility, infection and possibly recovery originate in

these early attempts.

Furthermore, Ross elaborates at the beginning of the last century on the laws

governing malaria and fifty years later Macdonald develops a quantitative

theory of control that Ross had been attempting [SBH+12].

Comparisons between concepts in computing and epidemic spread are found

more recently, and go in both directions, including an analysis of databases

update [DGH+87] and applications of information, gossip and rumor dis-

semination within a network [DK64, Bum81].

The structural properties of the potential spread due to local interaction and

global movements could be described by a model of Temporal Graphs. The

main idea here is that edges of a graph are augmented with labels specifying

the time when they are enabled. A temporal journey through this graph

then becomes a path respecting the natural order of time.
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The classical problems of Graph Theory translate to Temporal Graphs re-

sulting usually in harder computational problems [Mic16]. Temporal Net-

work Epidemiology is one of the newest domains under the umbrella of

disciplines that propose a mathematical study for epidemic spread. The

monograph [ABVdDW08] already contains a chapter on Network Epidemi-

ology, while Masuda and Holme edit a collection of papers specifically on

this topic [MH17].

Our locations grid may be indeed viewed as either an online, or offline,

temporal graph in which edges between locations are available at all times if

the radius between them is very small, and other edges become available as

soon as there exist movement of units between locations. Probabilities may

be added to the edges in the spirit of the model presented in [TJH+18]. A

(probabilistic) journey through this temporal graph will then correspond to

a possible scenario of spread.

Considering the fact that the source of an illness may relate to both vector

transmission due to geographical proximity of locations, and animal move-

ments, we need to be able to compose the disk graph representing the spatial

coordinates of our locations with the map that represents the movement be-

tween these locations. The resulting structure is a temporal graph in which

we allow some of the edges to have permanent life-time. Connectivity for

Temporal Graphs is studied in [KKK02]. Temporal exploration is a very

debated topic in the area [EHK15].
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Viewing specific problems at a higher resolution, the technique found for ex-

ample in [CKNP18] may be used for efficient computation of certain network

properties on which viral propagation may depend. The mentioned paper

uses the ladder technique to compute very efficiently the diameter of a tem-

poral graph, among other properties. The phenomenon of intractability may

be avoided in searches by only considering a temporal radius dictated by the

periods of Latency and Incubation for the illness.

We assume an indivisible temporal radius d on which the transmission mechanism is

enabled. This means in practice that searching for infected locations must halt after a

fixed period of time, making such a search procedure fixed-parameter tractable in the

number of locations with Incubation time as parameter.

Figure 2: Inner and Outer Operators

Initial Elaborations

Classical Patient-zero. History of Spread. Radius of spread. Pre-

diction We are in the possession of a formal description of classical epi-

demiological detection applied in the context of Temporal Network Epidemi-

ology.
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Our algorithm comprises of two stages: the back-detection phase, aiming at

building an accurate past history of disease spread within the network, and a

forward-detection phase, aiming at identifying the compromised locations on

the network, i.e. the nodes of the network in direct and indirect contact with

a source of infection, after the source has acquired the illness in question.

The patient zero problem refers to tracing the primary origin of spread

within a certain geographical area, while predictions regarding the possibly

exposed locations can be made with a positive degree of accuracy. We

elaborate on the process of detecting a given source of infection given there

exist one or several detected locations.

We outline the procedure for approximating a history of spread, that is, a

time-line for a given illness, including a solution for a possible “patient zero”

problem and prediction of possibly exposed locations.

Detection mechanisms are well-understood in Epidemiology. What often makes this task

harder is lack of precise surveillance information, which in our case does not constitute

an issue.

Figure 3: Back detection (Patient Zero), followed by forward prediction (Detection)
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The classical procedure is as follows.

- given a macroscopically infected location, trace its contacts with other

locations, on a temporal radius of roughly the Latency period of the

illness

- repeat the previous step for all locations found, until no other locations

can be found within the network

- now trace the contacts the identified locations have had meanwhile,

forwardly, again sensitive to the relevant temporal radius, function of

Incubation and Latency.

Other attempts at a Patient-zero problem are complicating the issue some-

what and sometimes attempt to model situations with imperfect information

[ABD+14].

In our case however, computing these potential infections is not expensive

in terms of resources and we may safely say that isolating possible infections

may be done with a very high degree of accuracy.

Regarding infections by proximity, that is, an infected location lying too

close to healthy locations, it is possible to identify locations lying within a

certain radius of spread.

Intuition suggests there exists, for each location and each period of time

t − t0, a manageable geographical radius of spread beyond which infection

started at time t0 will not have spread by the time t.
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Relativized Patient-zero. Viral strains Next, we define and analyze

two problems that can be viewed as relativizations of the patient-zero prob-

lem in a temporal graph with respect to a set of vertices of the graph. We

observe the source of non-vector infection for a given location to be another

location that sent units to the first, such that there exists a temporal jour-

ney between the two, at a temporal distance equal roughly to the latency

period of the illness.

A least temporal source for two vertices is a set of vertices that lie the

closest on journeys to the two vertices.

Define the least temporal source for a set of vertices as the intersection

of least temporal sources for the vertices in the set, taken pairwise.

A greatest temporal source for two vertices is a set of vertices that lie

the farthest on journeys to the two vertices.

Define the greatest temporal source for a set of vertices as the inter-

section of greatest temporal sources for the vertices in the set, taken

pairwise.

Therefore we are able to define the corresponding problems of finding the

set of least and greatest temporal sources for a given set of nodes in the

Temporal Network.

These problems are related directly to the concept of relativization of the

patient-zero problem, in the intuitive sense that the set of least temporal

sources will most likely contain locations infected with strains most common

to the nodes we take as input, while the set of greatest temporal sources,

if lying at a temporal distance greater than the latency period, will contain

the patient-zero relative to all of the input nodes.
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Numerical figures The data is contained in files outlining the geographi-

cal locations, and the transactions between locations, both for the year 2013.

As outlined previously, a search was performed on the data and the following

was found. There were 110,000 farms recorded. A number of distinct animal

moves of 2,658,619 and a number of non-distinct animal moves of 3,336,089.

Distinct here means repeated pairs were ignored. The number of sending

farms was 72,200 while the number of receiving farms was 52,685, out of

which the number of distinct senders and receivers was 82,127. Starting on

some farm we proceeded with DFS and restarted the search when no more

farms could be reached, iterating this process until all of the farms were

visited by the search. We have found 9,115 components on the receiving

farms, while 19,814 components were found on the sending farms.

One Preliminary Analysis

Incubation As usual we assume a period of incubation for the illness.

During this period, an infected unit cannot be easily detected through

macroscopic observation. Hence a possible infection cannot be contained

in a cost-effective manner.

Infection Infection may be due to animal movements, or due to proximity

of locations. In the case of infection through proximity we assume the radius

of infection on which we elaborated above.

Rounds Trade between locations will hence only be done in rounds. The

first round of unit moves is done at time t1 while the second at time t2 ≥
t1 + d+ d′. In general, tk ≥ tk−1 + d+ d′, where the value of d depends on

the Incubation time for the illness while the value of d′ will be a function of

the Incubation time for the nodes lying the farthest away from the infection

epicenter but still within the geographical radius defined above.

Infection response When and if locations become detected, these de-

tected locations are taken out of the market for a suitable number of rounds,
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until they have fully recovered, after which they will be allowed to trade

again. The goal of this Epidemic Game is to schedule the next round of

trade between locations in such a way as to allow the Network to recover

from potential infections.

Question Are we able to formulate a strategy minimizing the number of

infected locations?

Formalization We are given the disk graph and we may be given the

movements graph in off-line or on-line form. The movements graph specifies

the order of the moves between locations. The game has one player, the

Controller, having access to the movement file, acting against a randomized

Environment. After each move from the movements graph, the Environment

chooses randomly one of the two actions available: they may choose to

label a location as infected, or they may not exercise this action. Player

Controller decides the exact point in time the next round of trade will take

place. Constraints may be placed that result in a form of censorship for the

actions of the Controller.

Game Description Starting with the specified disk graph, the game is

described as follows.

- rounds are indexed by the time of their occurrence;

- in any round, movements occur between locations according to the

movements graph;

- for each movement (u, v) within the round the Environment specifies

randomly if this results in an infection of v by u;

- any infected location stays infected for a period of time determined by

a fixed recovery parameter;

- an infection in a round n becomes macroscopic only at time n + d

where d is the Incubation time, in which case the count of the loss

function is incremented;
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- any location which is macroscopically infected is taken out for a num-

ber of rounds that span a period of time determined by a given recovery

parameter;

- the task of the Controller is to flag locations as “exposed”, and decide

when the next round of trade will occur,

- it is assumed that locations flagged are taken out of trade, but also

that it is impossible for a flagged location to infect by proximity.

In specifying a strategy we are seeking to give the values for a scheduling and

a flagging that minimize some possible loss. An initial theoretical analysis

of this framework pinpoints three types of strategy.

Strong apriori strategy A strong apriori schedule minimizes the value

of the loss globally. The Controller has no access to the movements file in

this setting.

Apriori strategy An apriori strategy minimizes the value of the loss glob-

ally. The Controller has access to the movements file in this setting in an

offline fashion.

Greedy strategy A greedy strategy minimizes the value of the loss lo-

cally. The Controller has access to the movements file in this setting in an

online fashion.

Questions How to compute apriori and greedy strategies? How to com-

pute them efficiently?

Example For any detected node in the graph, we are able to find the

nodes within the radius of spread relative to the time interval since the

node was infected, and estimate their time of infection; to the most recent

time of potential infection, we add the time of Incubation of the illness,

repeat this operation for every node in the graph and take the maximum

value calculated, to obtain the parameter ∆. Let the trivial strategy be
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specified by the schedule function adding to the time of the current round

the amount of time corresponding to this ∆, while flagging as exposed every

node in the radius of spread of already detected nodes.

The trivial strategy is greedy; since the time interval between rounds exceeds

the incubation time of the latest infected location, potential infections are

flagged before the time of the next round of trade.

The key note here is that performing Rounds of Trade within the temporal equivalent of

the red area is a factor contributing to Epidemic spread.

Figure 4: Relationship between Detection and Latency.
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We identify the worst-case scenario for the Trivial Strategy. This corre-

sponds to performing Rounds of Trade on or before the Detection time for

the illness.

Figure 5: Trivial strategy analysis. Worst case variant.

Figure 6: Trivial strategy analysis. Worst case variant.
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The Optimal scenario is performing trade after the period of Detection has

passed.

Figure 7: Trivial strategy analysis. The optimal case.

Figure 8: Trivial strategy analysis. Best case variant.
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Axiomatic Epidemiology

Since there exist Mathematical Theories that study the domain, it is but

natural to attempt Axiomatizations of Epidemic Spread.

Some of the questions one is hypothetically able to answer under the model

we construct are the following.

do given observations imply a given hypothesis, e.g. there exist ”nat-

ural immunity” to an infection?

is a given hypothesis, e.g. the patient zero hypothesis, contradictory

with a given theory of epidemics?

is a certain scenario, e.g. Armageddon, possible?

how likely, under a certain theory of epidemics and given a set of

observations, is a certain scenario, e.g. Armageddon?

does there exist a computable necessary and sufficient condition for a

given scenario?

can this condition be tractably decided?

Basic notions

Primitives

units Units are undividable biological macro-organisms.

u, u′, u′′ . . . v, v′, v′′ . . .
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time Temporality is discrete. Time instances are natural numbers.

t, t′, t′′ . . .

We make use of the following integer parameter

NOW

This parameter divides time into, roughly-speaking, three equivalence classes.

probabilities computable reals ranging in [0, 1].

p, p′, p′′ . . .

populations collections of units.

γ, γ′, γ′′

clusters collections of populations.

Γ,Γ′,Γ′′ . . .

regions collection of clusters.

ρ, ρ′, ρ′ . . .

continents collection of regions.

P, P ′, P ′′ . . .

universe of discourse collection of continents.

Υ
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Primitive predicates unit v is susceptible at time t

S(v, t)

unit u is exposed to unit v at time t

E(v, u, t)

unit u is infected by unit v at time t

I(v, u, t)

unit v is detected at time t

D(v, t)

We note the operator immunized, which may be taken either as primitive

or as a redundant operator – unit v is immunized at time t

V (v, t) ≡ ¬S(v, t)

Temporal predicates

temporal overlap We provide a basic treatment of temporality under

which time intervals may overlap.

O(γ, γ′, t) = {u : ∃t′ < t[u ∈ γ(t) ∧ u ∈ γ′(t′)]}

population overlap Note that populations may overlap, in a certain tem-

poral sense. These overlapping conditions are the most fundamental factors

for disease spread.

O(γ, γ′) = {u : O(γ, γ′, NOW )}
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Axioms on units

definitions to be exposed at time t is to be susceptible at an earlier time

E(v, u, t) =⇒ ∃t′ < t[S(u, t′)]

to be infected at time t is to be exposed at an earlier time

I(v, u, t) =⇒ ∃t′ < t[E(u, t′)]

to be detected at time t is to be infected at an earlier time

D(v, u, t) =⇒ ∃t′ < t[I(u, t′)]

Spread

susceptibility susceptibility

∀u∃t < NOW [S(u, t)]

immunity strong immunization

V (u, t) =⇒ ∀t′ > t[¬S(u, t)]

weak (seasonal) immunization

V (u, t) =⇒ ∃t′∀t′′ ∈ [t, t′][¬S(v, t′′)]

exposure exposure is reflexive

∀t[E(v, v, t)]

exposure is symmetric

∀t[E(v, u, t) =⇒ E(u, v, t)]

infection infection is weakly-transitive

∀t < t′ < t′′[I(v, v′, t) ∧ I(v′, v′′, t′) =⇒ I(v′′, t′′)]
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Axioms on populations

Definitions

E(v, t)←→ ∃u[E(u, v, t)]

I(v, t)←→ ∃u[I(u, v, t)]

Sγ(k, t)←→ ∃u1u2 . . . uk ∈ γ[
k∧
i=1

S(ui, t)]

Eγ(p, t)←→ p = k/|γ| ∧ ∃u1u2 . . . uk ∈ γ[
k∧
i=1

E(ui, t)]

Dγ(p, t)←→ p = k/|γ| ∧ ∃u1u2 . . . uk ∈ γ[

k∧
i=1

D(ui, t)]

Iγ(p, t)←→ p = n/|γ| ∧ ∃u1u2 . . . uk ∈ γ[

k∧
i=1

I(ui, t)]

Probabilities

Dγ(p, t) =⇒ ∃r ≥ p[Iγ(r, t)]

Iγ(p, t) =⇒ ∃r ≥ p[Eγ(r, t)]

Eγ(p, t) =⇒ ∃r ≥ p[Sγ(r, t)]

Uncertainty

operator SE

SEγ(u, t)

←→

∃t′′′ < t′′ < t′ < t∃u′′′∃γ′∃u′′ ∈ γ′∃u′ ∈ γ{S(u, t′)∧{[E(u′, u, t)]∧{[I(u′′′, u′′, t)]∧[E(u′′, u′, t)]}}}
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SEγ(t)←→ ∃u ∈ γ[SEγ(u, t)]

SEγ ←→ SEγ(NOW )

operator SI

SIγ(u, t)

←→

∃t′′′ < t′′ < t′ < t∃u′′′∃γ′∃u′′ ∈ γ′∃u′ ∈ γ{S(u, t′)∧{[E(u′, u, t)]∧[I(u′′′, u′′, t)]}}

SIγ(t)←→ ∃u ∈ γ[SIγ(u, t)]

SIγ ←→ SIγ(NOW )

operator EI

EIγ(u, t)

←→

∃t′′′ < t′′ < t′ < t∃u′′′∃γ′∃u′′ ∈ γ′∃u′ ∈ γ{S(u, t′)∧{[E(u′, u, t)]∧{[I(u′′′, u′′, t)]∧[E(u′′, u′, t)]}}}

EIγ(t)←→ ∃u ∈ γ[EIγ(u, t)]

EIγ ←→ EIγ(NOW )
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Control measures

quarantine

Qγ(u, t, t′)←→ ∀t′′ ∈ [t, t′] −→ ¬∃v ∈ γE(u, v, t′)

isolation

Qγ(t, t′)←→ ∀u ∈ γ

block

QΓ(t, t′)←→ ∀u ∈ γ

border

Qρ(t, t′)←→ ∀u ∈ γ

restriction

QP (t, t′)←→ ∀u ∈ γ

Computational complexity

Our model is decidable due to the finiteness of the structures employed.

We expect to observe NP-complete Problems at Cluster Level due to a

reduction from k-SAT or HyperGraph Search

We expect to observe Polynomial Time Problems at Population Level and

PSPACE, EXPTIME above Cluster Level.
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Using Cellular Automata

A two-dimensional cellular automaton M is a septuple

M = (N,W,A, I,∆, S̄, T )

hence M comprises of a finite two-dimensional array A over a bounded

integer set I, a fixed neighborhood function N i
j → P(A) together with a

collection ∆ of rules δ of the form

(N̄ i
j , W̄

i
j , Āi,j)→ q ∈ I

It is assumed |N(i, j)| = k for some fixed k. Hence the transition rules are

defined for all collections of tuples r̄ ∈ Ik.

W (i, j) is a list corresponding to the weather parameters in the neighbor-

hood N(i, j), according to which infection may propagate in different ways.

A configuration of the automaton is an array of values Ā. S̄ is the starting

configuration.

A transition Ā→ Ā′ takes in total a fixed T time units to propagate and it

is any pair of arrays (Ā, Ā′) such that if Ā = Ā then

Ā′ =


(N̄1

1 , W̄
1
1 , Ā11) (N̄1

2 , W̄
1
2 , Ā12) . . . (N̄1

n, W̄
1
n , Ā1n)

(N̄2
1 , W̄

2
1 , Ā21) (N̄2

2 , W̄
2
2 , Ā22) . . . (N̄2

n, W̄
2
n , Ā2n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(N̄d
1 , W̄

d
1 , Ād1) (N̄d

2 , W̄
d
2 , Ād2) . . . (N̄d

n, W̄
d
n , Ādn)
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A computation is a sequence Ā1W̄1Ā2W̄2Ā3W̄3 . . . such that each weather

configuration W̄i is given at step i and

Ā1 = S̄ and Āi → Āi+1

We say the sequence Ā1W̄1Ā2W̄2Ā3W̄3 . . . stabilizes if the sequence Ā1Ā2Ā3 . . .

stabilizes, that is if Āi = Āi+1 for some K and all i > K.

We say the sequence weakly-stabilizes if the sequence Ā1Ā2Ā3 . . . contains

a sub-sequence that stabilizes.

We may choose to consider a computation as ended in the case in which it

stabilizes or weakly-stabilizes.

Modeling jumps

In the case of modeling the jumps, the automaton becomes

M = (U,W,A, I,∆, S̄, T )

where U(i, j) = N(i, j) ∪ J(i, j) for any specified J(i, j) ⊆ A.

In other words, any collection of cells of the grid may become, for a prede-

termined period of time, part of the neighborhood of cell Aij . The rules δ

now have the form

(Ū ij , W̄
i
j , Āi,j)→ q ∈ I

The form of a transition becomes Ā→ Ā′ such that

Ā′ =


(Ū1

1 , W̄
1
1 , Ā11) (Ū1

2 , W̄
1
2 , Ā12) . . . (Ū1

n, W̄
1
n , Ā1n)

(Ū2
1 , W̄

2
1 , Ā21) (Ū2

2 , W̄
2
2 , Ā22) . . . (Ū2

n, W̄
2
n , Ā2n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Ūd1 , W̄
d
1 , Ād1) (Ūd2 , W̄

d
2 , Ād2) . . . (Ūdn, W̄

d
n , Ādn)
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Figure 9: Moore and Von Neumann Neighborhoods

Finally, the form of the computation becomes Ā1W̄1J̄1Ā2W̄2J̄2Ā3W̄3J̄3 . . .

Again, we assume W̄i and J̄i are given as inputs at step i.

Computation timing

Transitions Ā1 → Ā2 → Ā3 → · · · → Āi → Āi+1 . . . each happen in discrete

time 1, 2, 3 . . . i, i+1 . . . The practical meaning of this is that we may observe

temperature changes and animal movements at every single unit of time.

The timing parameters of the automaton T (N̄) may however be larger than

one time unit. This parameter describes the time an infection takes to

propagate from the neighborhood periphery to the center.
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Neighborhoods

The Moore Neighborhood M(i, j) of Ai,j is defined as the set of cells

Ai+1,j−1, Ai,j−1, Ai−1,j−1, Ai+1,j , Ai,j , Ai−1,j , Ai−1,j+1, Ai,j+1, Ai+1,j+1

The Von Neumann Neighborhood V (i, j) of Ai,j is defined as the set of cells

Ai,j−1, Ai+1,j , Ai,j , Ai−1,j , Ai,j+1

We note that special conditions may be defined for neighborhoods of bound-

ary cells, as the grid is not assumed to be infinite.
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Future Work

Expanding our theoretical analysis: finding a list of reasonable constraints

to be satisfied by the choices of the Controller. Construct a probabilistic

generalization of the Game.

Topics in Network Centralization. Immunization Centralization

seeks to provide a ranking on the nodes according to their importance within

the Network.

There exist three types of Centralization in the classical sense, Degree Cen-

tralization, Closeness Centralization and Betweeness Centralization. The

first is purely local and considers degree of nodes.

The second is semi-global and considers relative position of nodes to other

nodes. The last is fully global and considers the prevalence of nodes within

all-pairs shortest paths.

This concept plays a central role in the choice of locations for which immu-

nization may prove to be mandatory.

Questions in Temporal Network Epidemiology Is it possible to pro-

duce different temporal graph layers for the aggregated automaton that will

generate the same computation?

Hence, under what conditions do different sequences of jumps and different

weather parameters produce the same computation?

Similarly, under what conditions do different sequences of moves and differ-

ent weather parameters produce a substantially different computation?
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Hence, is it possible to split the geographical graph into “equivalence classes”

such that an infection within such an equivalence class may produce similar

results to any other infection within the same partition?

What is the “worst” possible temporal graph, of bounded degree, in terms

of disease spread, given a fixed location graph? We shall pose this question,

after identifying reasonable constraints on the graph of movements.

Hence, under what restrictions can disease spread be delayed as much as

possible?

For example, we may be able to show formally that limiting the number of

farms that can receive animals from any given farm, i.e. placing a bound on

the out-degree of any node in the movements graph, would cause a significant

delay in the spread of BTV, hence allowing for a natural end to the disease

before reaching disastrous amplitudes.

The gist of these questions concerns Network Configuration. What exactly

characterizes a Network favoring spread of disease?

Can we classify bad networks? Can we measure their badness?

Can we, by any chance, rank the Networks by attempting to create a Topo-

logical Space through defining a measure of “distance” between them?
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Axiomatization Advanced topics in the Axiomatization part would be

the definition of the following predicates

- Infectious Injection, the assumption of maliciously infecting units or

populations,

- Patient Zero Hypothesis, the assumption that there existed a unit

infected first during the course of an Epidemic,

- Exposure Rate, the definition of the rate at which units or populations

are exposed,

- Typhoid Mary Predicate, the definition of a reservoir of infection,

- False Positive, and True Negative screening, the assumption that de-

tection can be fallible,

- Harmless Exposure, the assumption that Exposure can be harmless,

- Fallible immunization, the assumption that immunization can fail.

Cellular Automata Produce different inputs for the cellular automaton

that will generate the same computation.

Compute the conditions for different sequences of jumps and different weather

parameters to produce the same computation.

Hence, separate equivalence classes for computation, some desirable and

some undesirable.
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