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Reverse Mathematics

• A program in Mathematical Logic introduced by 
Harvey Friedman in 1974 at the Vancouver ICM

• The purpose is to establish the “foundations” of 
ordinary Mathematical Results in terms of 
Subsystems of Second Order Arithmetic



Computability Theory 

• Originates in the work of Alan Turing, who introduced the notion of 
“computability” in a famous paper from 1936

• It used to be known as Recursion Theory, due to the work of Alonzo Church and 
Stephen Kleene

• Historically, it developed due to David Hilbert’s address at the 1900 ICM in Paris 

• One of the problems posed by Hilbert was the development of a “mechanical 
procedure” that would output all of the “truths of Mathematics”



Arithmetical Hierarchy

• We quantify over sets of Natural Numbers

• A set is Σ1if it is equivalent to a formula of the form∃𝑥 𝑃(𝑥) where P is a computable predicate

• In this context, “computable” means Turing Machine computable

• Similarly, a set is Π1if it is equivalent to a formula of the form∀𝑥 𝑃(𝑥) where P is a computable predicate



Sigma and Pi

Imagine you perform a search through a collection of objects, trying to 
find an object that satisfies a specification

Provided the collection is infinite, this question corresponds to deciding a Σ1 property! Also known as Recursively Enumerable or Semi-Decidable

Imagine you perform a search through such a collection, trying to establish 
if all of the objects satisfy a specification

What is actually computed, is a Π1 property, also known as Co-R.E.



Arithmetical Hierarchy

• This can be extended as follows

• A set is Σ𝑛 if it is equivalent to a formula of the form

• ∃𝑥 𝑃(𝑥) where 𝑃(𝑥) is Π𝑛−1
• A set is Π𝑛 if it is equivalent to a formula of the form

• ∀𝑥 𝑃(𝑥) where 𝑃(𝑥) is Σ𝑛−1
• A set is Δ𝑛 if it is both Σ𝑛 and Π𝑛
• In particular, a Δ1 set is what is called decidable 



Reverse Mathematics

• Five subsystems of Second Order Arithmetic are used

• 𝑅𝐶𝐴0 recursive comprehensive axiom

• 𝑊𝐾𝐿0 weak König’s lemma
• 𝐴𝐶𝐴0 arithmetic comprehensive axiom

• 𝐴𝑇𝑅0 arithmetic transfinite recursion

• Π11CA pi-1-1 comprehension axiom

Typically, we work “within” one of these systems – usually 𝑅𝐶𝐴0, 
and prove a given result of ordinary mathematics is equivalent to 
one of these axioms 



Recursive Comprehension Axiom

• This system comprises of three main ingredients

• Peano Axioms without induction – i.e. Robinson Arithmetic

• Induction on Σ1 sets

• Comprehension for Δ1 sets

This means results carried fully within this system must be fully effective. 

Intuitively, a Turing Machine with no oracle access can produce all of the objects 
the proof makes use of.



A fully effective result

The rational numbers form an ordered field

This result is fully effective! 

In a computable ordered field, such as the rationals

• The field operations are computable

• The inverses are computable

• The total order is computable



Weak König’s Lemma

• As the name suggests, a “weak” comprehension principle

• Every infinite binary branching tree has an infinite path 

• Strictly stronger than previous system – an infinite path is not computable 
as such, it can only be approximated! 

• That is, the infinite path property is R.E. 



An equivalent result

A continuous real function on the closed 
unit interval is bounded



Boundedness on unit interval

We prove this from 𝑊𝐾𝐿0, the other direction is similar 

Let f(x) be a real continuous function on the closed unit interval. 

Encode the function as a binary branching tree as follows 

– let ∅ be the root, 

- branch twice for f(0) and f(1), 

- branch again twice from f(0) for f(0) and f(1/2), and 

- branch twice from f(1) for f(1/2) and f(1), and so on recursively. 

Now, this process approximates the function discretely. 

Take the maximum of any infinite path of this tree, and that is a bound for the function.  



Arithmetic Comprehension

• Two equivalent formulations

• Proofs encoding full König’s lemma

• Any finitely branching infinite tree has an infinite path

• Proofs requiring the Halting Set as an oracle

Strictly stronger than previous system. 

Intuitively, the length of the KL tree is infinite, while its width is finitely 
bounded – we do not know just how big the width will be, all we know is it 
is finite.



A result requiring arithmetic comprehension 

Every bounded increasing sequence of real 
numbers has a limit



Convergence

We prove this from KL, the other direction is similar

Let 𝑎𝑖 be a bounded increasing sequence of reals. 

Encode a finitely branching tree from 𝑎𝑖 as follows.

- let ∅ be the root,

- at level 1 of the tree, for all 𝑖 such that 𝑎1 − 𝑎𝑖 < 1 we let 𝑎𝑖 be a child of the root

- in general at level 𝑗 of the tree, for all 𝑖 such that 𝑎𝑗 − 𝑎𝑖 < 𝑗 we let 𝑎𝑖 be a child of the previous node

This tree is infinite. It is finitely branching. By KL it contains an infinite path.

Perform a maximum operation over this path to obtain the limit of the sequence. 
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Commutative Ring Theory

• In an integral domain, if every irreducible is a prime, then every 
element has at most one decomposition into irreducibles

 This result is provable in 𝑅𝐶𝐴0
• Well-foundedness of divisibility implies the existence of an 

irreducible factorization for each element.

 This result is equivalent to 𝐴𝐶𝐴0 over the base system 𝑅𝐶𝐴0



Thank you!


