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Overview

€© The framework of Reverse Mathematics

© A Reverse Algebra Problem



Background

Second Order Arithmetic

The language £, is a two sorted language, which has two types of
variables: number variables, which are denoted by lower-case letters, and
set variables, which are denoted by upper-case letters. £, also has two

types of quantifiers, dx, Vx and 4X, V.X.

Axioms

The axioms for Z; come in three categories: axioms specifying the
properties of +,-,0,1, <, €, to which we add an induction axiom:

(0eXAVn(neX - n+1eX))— Vn(neX))

and a version of the comprehension scheme for forming sets:

3XVn(n € X + ¢(n)).




Arithmetical Hierarchy

@ A formula v of Second Order Arithmetic is }:g and ﬂg if it is logically

equivalent to a first order formula with only bounded quantifiers.

o A formula is classified as £, (or L n41) if it is logically equivalent to

a formula of the form:
Anydng - - - dng),

where 1 is a M° formula.

@ A formula is classified as ﬂﬂ+1 (or M,q) if it is logically equivalent to
a formula of the form:

VmVny-- -V,

where 1 is a L9 formula.




Computability Theory

Functions computed by Turing Machines are called partially computable.
We can effectively enumerate the partially computable functions:

Y0, ¥P1,P2 -
For a set A (oracle), we can compute the list of oracle machines:

04,04, ...

A set is computably enumerable (c.e.) it can be listed effectively. If a set
is c.e. and co-c.e. then we call it computable.

The canonical (non-computable) c.e. setis () = {e | pe(e) |}

There is an entire hierarchy of such sets, for instance: (" = {e | ®Y (e) | }.

Note that (" is X1 while 0" is ¥.
In general, the nth Turing Jump 0(" is T ,,.



Background

Turing reducible

We say A is Turing below B, written A <71 B, if xa = ¢® for some oracle
machine .

If A<ty B and B <t A, then A=71 B.

Turing degrees

A Turing Degree is an =7-equivalence class.

The join of two sets A and B is defined as

A B={2a|lae Afu{2b+1|be B}

The join is the least upper bound of the Turing Degrees of A and B.
Hence, the Turing Degrees form a join-semi lattice.




Overview

Reverse Mathematics was introduced by Harvey Friedman in the seventies.

The Main Question

Which set-existence axioms are sufficient to prove Theorems of ordinary,
non-set-theoretic Mathematics?

The Systems

Most Theorems of ordinary Mathematics are equivalent to one of five
Subsystems of Second Order Arithmetic:
RCAo, WKLo, ACAg, ATRp and Mi — CAo.

We start with a direct proof from a system to the theorem, to which we
append a "reversal step”, in which we show that some axiom follows (over
base system RCAp) if we assume the Theorem.



Proofs in RCAy

A result is provable in RCAy if it uses only:

@ basic arithmetic facts,

@ comprehension restricted to computable properties:

ASVx(d(x) & x € S),

@ induction restricted to 21 sets:

(0eXAVn(ne X = n+1eX))— ¥n(ne X)).

il

If H is a normal subgroup of a group G, then G/H is a group. |

Effective version:
If H is a computable normal subgroup of a computable group G, then
G/H is a computable group.




Weak Konig's Lemma

Theorem
Any binary branching infinite tree has an infinite path.

Notice that the effective version of this theorem fails. Hence, this
statement is not provable in RCAy.

The system WKLy comprises of RCAp and the above theorem.
Results equivalent to WKLy over RCAq fail to hold effectively.



ACAp comprises of:
o RCAq

@ The comprehension scheme 3XVn(n € X <+ ¢(n)) applied to
arithmetical formulas .

ACA, can define the Turing Jump of any set S: S’ = {e | d2(e) |}.
Any finite iteration of the Jump operator can be defined.

KL: any finitely branching infinite tree has an infinite path.

¢ © @ ¢

In particular, if we want to prove in the "reversal step” that a
Theorem implies ACAy, it is sufficient to show that a model of
Theorem + RCAy is closed under the Turing Jump.



ATRy and N} — CAg

The third subsystem is ATRp, which stands for Arithmetic Transfinite
Recursion.

@ Allows the iteration of the Turing Jump operator along any countable
well-ordering,

@ Any two well-orderings are comparable.

Formally defined as ACA plus the comprehension scheme for M1 sets

(defined by a formula of the type VX (X, a)).

e For any sequence of trees ( Ty | k € w), there exists a set X such that
k € X if and only if T, has an infinite path.

il




We look at computable commutative rings with unity R = (R, +,-,1,0).
unit: a € R s.t. dbsuchthata-b=1.

associates: a,b € R s.t. dc a unit with a-c = b.

division: a| b if dcs.t. a-c=b.

integral domain: a ring with no zero divisors.

proper division: a properly divides b if a | b and they are not associates.
irreducible: a non-unit element for which the only divisors are units or
associates.

irreducible factorization of a: a multiset B = [p | p is irreducible] such

that a=u [] p for a unit u.
peB
ACCP: the ring contains no infinite chain (r;);c, s.t. riy1 properly divides

l.
Atomic: an integral domain in which every element has an irreducible
factorization.




The Theorem

Theorem (ACA))
If an integral domain satisfies the ACCP, then it is Atomic.

first proof.

Let R be a non-atomic integral domain. There is a non-unit a of R that

does not have an irreducible factorization.

Build a (i computable infinite binary branching tree T recursively.

Let a be a leaf of T. For each leaf b of T, search using (' for pairs ¢, d

such that cd = b.When found, test using ()’ whether either of ¢, d is a

unit.If positive, loop to the next pair, otherwise put c, d as leaves

descending from b.

Note that at any stage we are bound to find children of some leaf, since

otherwise the leaves constitute an irreducible factorization for a. By

relativized KL, T has an infinite path, which witnesses the failure of ACCP.
]




The Theorem

second proof.

Let R be a computable non-Atomic integral domain. There are two cases
to consider.

Case 1: there is some a € R with no irreducible factor. Recursively define
a sequence (a;)jc,, With a9 = a and a,;; some proper factor of a,. By
induction, a, has no irreducible factor, so is reducible itself. (/' can identify
such apy1, so the sequence (a;)jc. is computable from (. Since this is an
infinite descending chain in divisibility, it is a counter-example to ACCP.
Case 2: every b € R has an irreducible factor, but some a € R is not the
product of irreducible elements. Recursively define a sequence (a;)ic,, with
agp = a and a,; a proper factor of a, such that there is some irreducible
pn € R with a, = ap+1 -g pn. By induction, a, is not the product of
irreducible elements, and since p, is irreducible, this implies a,;; does not
have an irreducible factorization. (" can identify an irreducible factor of a,
and so the sequence (a;);c,, is computable from (). This sequence is a
counter-example to ACCP.




An important thing to note here:

Both proofs presented require the oracle ()”. |

In the first proof, the labels of the tree don't have a (¥-computable bound.
Hence we need the relativised KL rather than WKL, which is equivalent to

@H .

For the second proof, identifying an irreducible factor uses (.

We currently know of no proof that requires an oracle weaker than (). J




Reversal proof

There exists a computable integral domain Q, not Atomic, such that any
sequence (¢;)jc,, from Q, with ci1 properly dividing cy for all k,
computes (V.

T he statement "if an integral domain satisfies the ACCP, then it is
Atomic” implies ACAp.

Let M be a model of RCAg+ the statement. Let X € M. we show

X" € M. Note that M is closed under Turing reducibility. In M, from the
proposition above, obtain an X-computable ring @ which is non-Atomic
and if (¢;)je,, from Q with Yk cx.1 | ¢k and they do not associate then
X & (C;} S X'

By the statement, there is such a sequence in M. So X’ € M.




Proof outline

We construct in stages, from an enumeration of (¥, a set of strings which
(informally) encodes a binary branching computable tree T whose unique
infinite path computes (I'.

Construction

Let 0y = A and T; = {o1}.

Step k, for k > 1: If there exists n € w with n < |ok| such that ox(n) =0
and n € 0}, then 041 =0 and Tyy1 = Ti. Otherwise put n = o]
and let

i}

s - !
Cpns = 0,0, ifnéd
! ! !
o, s, wherene @, and nec @\ 0_,;

with Tgi1 = T U {oks1}-
Finally, let T = | T,.

ncw




Proof outline

Next, we encode T by divisibility chains in some computable integral
domain Q.

Let Qo =2 Q, @1 = Qolay]----

At step k, we have computable ring Qx = Ri|as,, boytnln=1.2|o,|, Where
Ry is a computable subring of Qx and the elements presented are
algebraically independent over Ry.

At step k + 1, if Tg+1 = Tk make by, a unit of Qk41, we let

Rk+1 = Rk [bg“b;kl] and Qk+1 = Rk-l-l[aﬂkﬂﬂ bﬂk+1fﬂ]'

Otherwise, if T3 = T U {oki1}, let Rxki1 = Rk and define

Qk+1 = (Rk+1lasy s boytnl)364 .15 boy.,] and impose the condition

doy — dogyy bﬂk+1-

Finally, let Q, = | Q.

kew




Proof outline

We can prove the following:
@ No a, in @, is a unit or irreducible. Hence a, does not have an
irreducible factorization.
@ @, is a non-Atomic integral domain.

@ By the Theorem we study, it must have infinite descending chains in
proper divisibility.

@ Any infinite divisibility descending sequence of @, whose terms do
not have an a, factor must stabilize.

@ Any infinite descending chain in divisibility of Q,, computes (.

Therefore, we have shown the Theorem under study implies ACAy.



We have shown:

There exists a computable integral domain @, not Atomic, such that any
sequence (¢j)iew from Q,,, with ¢, 1 properly dividing ¢ for all k,
computes ().

Is this true if we replace (Y by ("' ?

The direct proofs we have use ()"”.So the question seems natural: either we
can improve on these proofs and use a weaker oracle or answer the
question above in the affirmative.



There exists an infinitely-branching computable tree with a unique infinite
path that computes (".

Construction
Consider an enumeration of the oracle machines ¢g, @1, @2 ... We
construct the tree S whose unique path encodes (. Run the construction

from before.

If we back-track in the construction, leave S unchanged. For each new oy,
with 1 < i < k, run (,?5?"(!) for k steps and put the string s1s2...5s into S,
where s; = 0 if ¢7%(7) T and s; = s if ¢7%(i) | at step s.




In the enumeration of (), elements can enter S more than one time.
As a consequence, it is possible that we backtracked from some element

o € S and then o reappears at a later stage.
This creates a problem for coding the tree into a ring: once an element is

made a unit in a ring, it cannot be un-inverted.
In technical terms, the terminal elements of the tree are not c.e. (X1),

they are 0'-c.e. (X2).
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